Nyah Flooding Frequency

Over time, we have changed the way the Murray flows to suit our needs, building weirs, dams and levees. Regional communities have benefited in many ways from river regulation, but we continue to see serious ecological impacts from these changes.

The Murray River and its floodplains both depend on intermittent flooding to stay healthy. River regulation has caused blockages to flow and reduced the frequency, duration and extent of flood events. We are also seeing increasingly long dry periods between floods, making it harder for floodplains to bounce back.

Environmental water combined with VMFRP infrastructure will help us bring these floodplains back to life. This will benefit all of our river communities – people, plants and animals – as we restore them for generations to come.

Murray River	Parnee Malloo Creek	Seasonal Wetland	Red Gum Swamp Forest	Red Gum Forest & Woodland
River flows (ML/d)	15,000	17,500	20,000	25,000+
Pre-regulation flows				
Frequency of flow events (years)	100 in 100	98 in 100	100 in 100	72 in 100
Longest interval between events (years)	0.8	1	1.6	2.5
Current flows (with environmental water entitlements)				
Frequency of flow events (years)	86 in 100	85 in 100	79 in 100	47 in 100
Longest interval between events (years)	1.8	1.7	4	4
Flows with VMFRP works*				
Frequency of flow events (years)	100 in 100	90 in 100	90 in 100	70 in 100
Longest interval between events (years)	0.8	1	1.6	2.5

* VMFRP sites can reduce the longest interval between floods to less than or equal to the maximum pre-regulation interval, depending on ecological thresholds and site condition.